American University of Sharjah Department of Mathematics and Statistics MTH 203, Sample Questions for Midterm I, 2009-2012

MULTIPLE CHOICE/SHORT ANSWER SECTION

(Circle the correct answers. No justification is required.)

1. (3 pts) Which of the following lines is perpendicular to the plane $2 x-4 y+z=7$?
(a) $\mathbf{r}(t)=\langle 2,-4,1\rangle+t\langle-2,1,0\rangle$
(b) $\mathbf{r}(t)=\langle-2,1,0\rangle+t\langle 2,-3,7\rangle$
(c) $\mathbf{r}(t)=\langle 1,15,3\rangle+t\langle-4,8,-2\rangle$
(d) $\mathbf{r}(t)=\langle 0,0,1)+t\langle 2,4,7\rangle$
(e) None of the above
2. (3 pts) Let \mathbf{u} and \mathbf{v} be non-parallel vectors. If $\mathbf{u} \times \mathbf{v}=\mathbf{u} \times \mathbf{w}$ then
(a) $\mathbf{w}=\mathbf{0}$
(b) $\mathbf{w}=\mathbf{v}$ is the only solution
(c) \mathbf{w} is orthogonal to v.
(d) \mathbf{w} is parallel to u
(e) None of the above.
3. (3 pts) Let $f(x, y)$ be a function with partial derivatives

$$
f_{x}(x, y)=\cos (y) \quad \text { and } \quad f_{y}(x, y)=-x \sin (y)
$$

Let $g(t)=f\left(2 t, e^{t}-1\right)$. Then $g^{\prime}(0)$ equals
(a) 0
(b) 1
(c) 2
(d) e
(e) none of the above.

WRITEN SECTION

(You must show your work and justify your answers.)
(a) (4pts) Find the area of the triangle with vertices $(0,0,1),(0,3,0)$ and $(1,1,1)$.
(b) (5pts) Determine if the following limit exists. If the limit exists then find its value.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3} y}{x^{6}+y^{2}}
$$

Q1. (14%) a) Find the equation of the line through $(1,-2,3)$ and perpendicular to the plane $2 x+3 y-z=5$
b) Find the distance between the point and the plane in part(a)

Q2 (10\%) Find the equation of the plane through $P(2,1,-3)$ that contains the line $L: x=t, y=3-2 t, z=1-t$.

Q3.(10\%) Find the parametric equations for the line of intersection of the planes $2 x+$ $y-9 z=5$ and $x-2 y+13 z=0$.

Q4. (6%) Let $f(x, y)=\sqrt{5+x+2 y^{2}}$ a) Find and sketch the domain of f. b)Sketch the level curve of the surface that passes through the point $(2,1)$.

Q5. (14%) Let $f(x, y)=\left\{\begin{array}{cc}\frac{y^{3}-x^{2} y+4 x^{2}}{x^{2}+3 y^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{array}\right\}$
a) Is $f(x, y)$ continuous at $(0,0)$? Justify your answer?
b) Does $f_{x}(0,0)$ and $f_{y}(0,0)$ exist? Justify your answer?

Q6.(6\%) Show that the indicated limit exists
$\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} \ln \left(2 x^{2}+1\right)}{x^{2}+2 y^{2}}$

Q7.(16\%) a)If $z=f(x, y)$ is implicitly defined by $z \sin (x y)-2 x y^{2} z=1+x^{2}+3 z^{2}$, find $\frac{\partial z}{\partial x}$?
b) Use the chain rule to find $\frac{\partial w}{\partial y}$ if $w=r t+v^{2} r+u e^{v}$ with $t=x y^{2} z, r=x^{2} y z, u=x y z^{2}$, $v=e^{x y z}$.

Q8. (16\%) Consider the paraboloid $f(x, y)=4 x^{2}+9 y^{2}$. a) Find the directional derivative of f at the point $(1 / 4,-1 / 6)$ in the direction from $(2,3)$ to $(3,1)$.
b) What is the maximum and minimum rate of change of f at the point $(0,-1)$.
c) Find the points on the paraboloid in part (a) at which the normal line is parallel to the line through $P(-2,4,3)$ and $Q(5,-1,2)$
Q9. (12\%)a) Let $f(x, y)=\sqrt{20-x^{2}-7 y^{2}}$. Find the linearization of f at $(2,1)$.
b) Use part (a) to approximate $f(1.95,1.08)$?

1. (5 Points) Find an equation of the sphere with a diameter whose endpoints are $P(-2,3,4)$ and $Q(4,-3,-2)$.
2. (5 Points) Find parametric equations of the line passing through the point $(2,3,4)$ and perpendicular to the plane $3 x+2 y-z=6$.
3. (5 Points) For the two lines whose parametric equations are given below, find their point of intersection.

$$
\begin{array}{ll}
x=-2+t & x=3-4 s \\
y=1+2 t & y=2+s \\
z=4-2 t & z=-4+6 s
\end{array}
$$

4. (10 Points) A plane contains the point $Q(2,2,1)$ and the line $x=2 t, y=4-t, z=t$. Find its equation. Do the following easy steps
(a) Find a point P that is on the line. Is this point also on the plane?
(b) Find a direction vector for the line.
(c) Find the vector $\overrightarrow{P Q}$. Is this vector on the plane?
(d) Find a normal vector to the plane.
(e) Now find the equation of the plane.
5. (10 Points) Find the distance between the parallel planes

$$
\begin{aligned}
& x+y-z=0 \\
& x+y-z=-2
\end{aligned}
$$

6. (10 Points) Given the line $\frac{x-1}{4}=\frac{y}{2}=\frac{z-3}{6}$ and the plane $2 x+3 y=-5$.
(a) Find the point at which they intersect.
(b) Had the equation of the plane been $2 x-4 y=-5$, then the line and the plane would not intersect. Give algebraic justification and interpret geometrically.
7. (15 Points)
(a) Let $f(x, y)=36-4 x^{2}-9 y^{2}$. Find and describe the level curve for f when $c=11$.
(b) Discuss $\lim _{(x, y) \rightarrow(0,0)} \frac{2 x-y^{2}}{2 x^{2}+y}$.
(c) Let $z=f(x, y)=\ln \left(x^{2}-x y\right)$ and find f_{x} and $f_{x y}$.
8. (5 Points) The radius of a cylinder is increasing at the rate of 2 meters $/ \mathrm{sec}$ and the height is increasing at the rate of 3 meters $/ \mathrm{sec}$. How fast is the volume of the cylinder increasing when the radius is 8 meters and the height is 11 meters? [This is a chain rule application. $V=\pi r^{2} h$.]
9. (5 Points) For $f(x, y)=y \cos (x-y)$, find the maximum rate of change of f at the point $(\pi /, \pi)$ and the direction in which it occurs.
10. (10 Points) Consider the sphere $f(x, y, z)=x^{2}+y^{2}+z^{2}-9$, find
(a) an equation of the plane tangent to the sphere at the point $(2,2,1)$
(b) a parameteric equations for the line normal to the surface at $(2,2,1)$.
11. (10 Points) Let $f(x, y)=x^{3}-3 x y+y^{2}$ and find all local max, min, and saddle point(s), if any.
